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ON THE DYNAMIC SNAP-THROUGH OF A NON-LINEAR ELASTIC SYSTEM* 

L.S. SRUBSHCHIK and V.I. YUDOVICH 

The dynamic instability "in the large" of a non-linear elastic continuous 
conservative system with Rayleigh friction subjected to a load applied 
instantaneously at the same t= 0 and keeping a constant value for all 
t>O /l-6/ is investigated. By using a potential theory analysis, the 
concepts of a well and equilibrium stability factor introduced by Myshkis 
/7, 8/, definitions are given of the dynamic stability of the system, 
the critical load of its dyanmic snap-through, and the astatic critical 
load. The latter yields a lower limit of those values of the load for 
which dynamic snap-through occurs. For the class of systems with a 
potential energy of the form of the square of the norm plus a weakly 
continuous functional /9/, among which are shallow elastic shells, for 
instance, /lo-12/, it is proved that the existence of saddle points with 
negative index follows from the non-uniqueness of the stable equilibrium. 
Here at least one saddle point is found on the boundary of the well of 
each stable equilibrium. Therefore, the stability factor acquires a 
graphic meaning as the least crossing among the energetic peaks leading 
from the well of a given equilibrium to the wells of the other equilibria 
(or to infinity, which is impossible, it is true, for functionals 
increasing at infinity). The application of this property for systems 
with potential energy depending on the load parameter p is the fundametal 
effective calculation of the stability factor and the astatic critical 
load pa. 

A basis is presented for the applicability of the energetic approach 
for the non-linear vibrations equations of elastic shallow shells. In 
particular, the classical problem is examined of the dynamic snap-through 
of a shallow elastic spherical shell subjected to an instantaneously 
applied hydrostatic load, and an example is presented of the determination 
of the astatic ritical load p. in the case of ambiguity of the families 
of unstable equilibria. We note that the load p0 for shallow spherical 
shells with different geometric parameters and boundary conditions has 
been found earlier in /13-17/. The good agreement between the values of 
p. and the critical load of dynamic snap-through, obtained by a direct 
numerical integration of the non-stationary problem /2-6, 13-18/ indicates 
the efficiency of using the energetic approach developed here in the 
theory of shells. 

The reasoning associated with estimating the height of the energetic 
barrier was used earlier in finite-dimensional models of the Galerkin 
method for the equations of the vibration of an arch /l, 19-21/. The 
considerations presented later understandably also include the case of 
systems with a finite number of degrees of freedom. 

1. Equation of non-linear elastic system vibrations. Domain of possible 
motions. 

Consider the vibrations equation of a conservative mechanical system in the presence of 
viscous friction forces inaseparable Hilbert space Ii: 

off -t- @B% + I' (0) = 0, I’ (w) = gradE I (0) 

f (0) = ‘is (Aa, 4ff - cp (4 

W) 

Eq.(l.lf has been introduced in /11/ as the abstract model of a system of non-linear 
equations of motion of shallow elastic shells. Here o(t) is an unknown vector-function of 
time t with values in H, Z(O) is the system potential energy, @Bat is the Rayleigh friction, 
and @ is the coefficient of friction. 

We will assume that the following conditions are satisfied. 
1) The operators A,B are linear. Their domains of definition DA.DB are compact in U. 
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The operator A is selfadjoint, positive-definite, and with a completely continuous inverse 
operator A-l. We introduce the scalar product in the set DA 

@I, %)HA = (Aa @r&z (f.2) 
The closure of DA in the norm (1.2) yields a complete Hilbert space H~,the energetic 

space of the operator A /22/. The imbedding of HA in H is completely continuous. 
The operator 3 is a selfadjoint, positive-definite operator acting limitedly from H into 

H. 
2) ThefunctionalI(o)is given in the whole space HA and grows in o: 1 (of+ Q) as 11 o/ixA-+ 

ce. Using (1.2) we rewrite I(o) in the form: 

Here 'p(o) is a weakly continuous, twice continuously differentiable functional in HA. 
Then m'(o) is a completely continuous operator acting from H~into H (the theorem of 
E.S. Tsitlanadse /9/, p.85/. 

Let us specify the initial conditions 

0 &=o==go, ~~{:~=gG goEHA* g1Ef-i 

We obtain the energy dissipation equation from (1.1)‘ (1.4) 

11.4 

Integrating with respect to time betweens and t, and setting s = 0 and S= m,we arrive 
at the inequality 

Let p-0. Then system (1.1) is conservative and the law of conservation of energy 
satisfied for it: E(i)= E(0). It hence follows that for fi = 0 the possible motions of 
system (1.1) are in a domain V defined by the inequality 

1 fm) < E (0) 

2. Stable equilibrium wells and energy saddle points. We will establish 

is 

fW 

certain properties of the functional Z(m). For any je R we introduce a set of least values 
of the energy level j: 

M$ = {mEHa :Z(w)<i) 

Lemma 2.1. The set M$ is bounded and weakly closed. The boundary&M, is a closed, but 
generally not weakly closed set. 

Proof. If it is assumed that Mj is not bounded, then there exists a sequence +&EM1 
such that q~\~niHA-+m. Since Z(w) is a function that grows in o, we obtain I(o~)-+oo, but 

this contradicts the inequality I (03 Q i. Therefore, Ml is a bounded set. Let O,SO% 
strongly, where [o,lHAid. Then m(w,,)-+q~((w%) and UCO~&,~$~. Passing to the limit in the 

inequality i(on)fi as R-+w, because of the semicontinuity of the norm relative to weak 
convergence, we deduce V% d%--(~(0%) <j. Applying both inequalities we obtain 

r(~)='f*IIWP~~-cp(Oo)d'fp~--(~%)di 

i.e., Ap1 is a weakly closed set. The boundary Mff- {o~R~:I(m)=j} is a closed set. Never- 
theless, @Ml is not absolutely a weakly-closed set (/9/, p.303). 

than 

The critical points (CP) of the functional I are determined from the equations 

Z'(w)zm u - 4p' (w) = 0, I’ (0) = gradH Z (0) (2.f) 

We let,Crdenote the set of CP of the functional I: Cl = {oSSH~ :1’(w) =~i 0). 

Lemma 2.2. Let EL= CI. Then the Pr&het differential Z”(u)= 1 -rp”(u) has no more 
a finite number of negative eigenvalues. 

Proof. The linear operator (p"(g) is completely continuous f/9/, p.140). Its spectrum 
can have just one limit point 12= 0, hence, outside the neighbourhood of the point a=i($b== 
i-h) the spectrum of the operator 1 -@(zL) has just a finite number of negative eigenVah?S. 

Two corollaries result from Lemma 2.2. 

Corollary 2.1. The CP of the function I cannot be a point of its relative maximum in & 
It is understood that this result only holds in the infinite-dimensional case. Maxima 

sometimes appear /I/ for systems with a finite number of degrees of freedom that approximate 
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elastic systems, which explicitly indicates the inadequacy of the approximation. 

Corollary 2.2. If the spectrum of the operator 1 -v"(u) is positive, then uE: 6'~ is a 
relative minimum point of the functional I in HA. 

Definition. The CP s of the functional I(o) is called a saddle point if the Frechet 
differential 1 -v"(s) has at leastone negative eigenvalue. The sum of the multiplicities 
of the negative eigenvalues of the operator is called the type of saddle point. 

Then as is well-known c/9/, p.3031, the functional I(w) has at least one minimum point. 
Let Kj(m) be a component of the connectedness of the set MI that contains a minimum point 
m. Obviously values j(>f(m)) exist for which Kl(m) does not contain other CP. 

Lemma 2.3. If the boundary t3Kj(m) does not contain CP, then for w i= aK,(m} there exists 
anumber cc>0 such that II 1' ((J))//x > a* 

The proof duplicates the well-known discussion (/I)/, p.112). 
Let j* = sup j, where the upper bound is taken over those energy values j for which 

K*(m) does not contain other CP except m. The notation Kj*(m)= K* is henceforth used. 

Theorem 2.1 (about the saddle point). Let n and n be isolated points of the relative 
minimum of the functional I. Then in the non-degenerate case the boundary aK* contains at 
least one saddle point ofthe functional 1: tYK* f-l Cr = @, aK* does not contain maxima and 
minima. 

Proof. For the relative minimum X(m) there exists a neighbourhood G (m)EHa such that 
1(o)> I(m) Vo E G(m)\ m. We examine the sequence of points CJE K* such that I(m)<&< 
ja<....-+j* = sup I(o), co E K,*, jr = K (a'), where jr is a monotonically increasing sequence 
of numbers for which the set Kl = Ki(m)= {caEff~:_I(@)< it} does not contain CP except m. 

Each of the sets RI is contained in the following together with a certain neighbourhood and 
u Kg = K*. Here, the inequality I(@*)< Z(o)< I(d+‘) is satisfied Kc,,\ KI since other- 
wise there would be a minimum or maximum component in Kl+,\Kl contrary to the definition 
of &+I. By virtue of the continuous differentiability of the functional rp(o) and the 
existence of another CP n the upper bound j* is finite. 

We will show that 8K* contains CP. We assume the opposite, i.e. SK* n Cl = a. Then 
for a certain S> 0 we construct the set K&* = KT*+a which contains no CP. In fact, for 
the point ye Ka*\K* such that I/y - ollsA<8, OE 8x*, we have 

11 1' (Y) - 1' (0) 11 < MI1 Y - 0 llHA < M6 M = 1 + maxII 'P' (%) 11. 

where the maximum is taken over the values o,~ 6'K* U (Kd*\K*). Hence, by using the 
Lemma 2.3, we deduce 

if 6 < ai(2M). Consequently, a set K:6* is constructed that contains no CP different from m, 
which contradicts the definition,of j*. Therefore, the existence of a CP of the functional 
I on aK* is proved. Denoting this point by y we have I‘(v)= 0, I(y)= j*, yEaK*. We 
conclude from Corollary 2.1 that the CP y cannot be a relative maximum point of the functional 
I. It will be a saddle point on dK* since it can also not be a relative minimum point of I. 

Let us assume the opposite, i.e., the existence of a small number e)O such that for 
oESg~(OEH~:jio-yYUH~<e} the inequality I( holds if o+y. Then for the points 
oESen K' we obtain the contradictory inequality I(O)< I(y)= i* by construction. 

Theorem 2.2. Let m and n be isolated relative minimum points of the functional I(o). 
There are no other minimum points. Then in the non-degenerate case the functional I(o) has 
a saddle point with index -1. 

Proof. By virtue of Corollary 2.l.the CP of the functional r(O) cannot be a maximum. 
The minimum equilibrium index in the case when the equilibrium is non-degenerate equals +l. 
Indeed, if m is a maxims point, then the spectrum of the Fr&het differential 1 - cp"(m) is 
positive and the eigenvalues hk of the linear completely continuous with the operator q"(m) 
satisfy the inequality &<_I. Then from the Leray-Schauder theorem (/9/, p.141), we obtain 
that the index of the non-degenerate minimum equals +l. 

Furthermore, the rotation of a completely continuous vector field o-cp'(6J) on large 
spheres Sp = {o: I[ onHA= p} equals +1 since this field is homotopic to the field w t/23/, 
p-152). Now the theorem follows from the Leray-Schauder principle. 

Definition of a well /?, 8/. A connected set in Ha that contains m and consists of 
those points w.for which 1(0)<j* where j* is the upper bound of those energy valuesj for 
which the sets {o~Ha: 1(0)<j) contain no stable equilibria different from m is called the 
well J(m) (Fig-la). 

Obviously J(m)= KP tm) Therefore, by using Theorems 2.1 and 2.2, we obtain for systems 



325 

(1.1) with potential energy of the form of the square of the norm plus a weakly-continuous 
functional /9/ that the existence of saddles with negative index follows from the ambiguity of 
the stable equilibrium. Here at least one saddle point is found on the boundary of a well of 
each stable equilibrium. The fact mentioned enables us to estimate the stable equilibrium 
well depth, Following A.D. Myshkis /7/ we understand the quantity 

2 (4 = I(Y) - f(m) 
where y is any unstable equilibrium on M(n), to be the depth of the well J(m) or the 
equilibrium stability factor. 

3. Dynamic snap-through (DS). Astatic Critical load (CL). many problems on 
the DS of non-linear elastic systems of the form (1.1) are included in the following general 
scheme. 

Fig.1 

Let I = I(w, p) depend on the load parameter p and 08 (P) 
be a continuous single-parameter family of stable equilibria of 
the system (1.1) corresponding to load parameter values from 

IP,, Pd. Let the system be in the equilibrium m. = w, (PJ for 
the value pot and then the load parameter changes by a jump and 
takes the value #E ip,, pk) (to be specific, the case pO>po 
is considered, and the case p”<po can be examined analogously). 

The question is whether the system remains in the equilibrium 
well o, (p") or departs from it as time lapses. The situation 
therefore reduces to an investigation of the behaviour of the 
solution of the Cauchy problem for system (1.1) with initial data 
o (0) = o@, cut (0) = 0. If o (t) E J (aa (p”)) for all t > 0, then 
we will say that there is no DS. If o(t) turns out to be out- 
side the well ~(m~~O)) for a certain t, then DS occurs. 

We will determine the CL of the DS pd* for the fundamental 
equilibrium a,,,= o,(p,,) by setting it equal to the upper bound 
of the values of p for which the motion of system (1.1) with 
initial conditions o(O)= CO,,, o1 (O)= 0 remains in the well 
J(o, (p)) for all t>O (Fig.lb). Therefore, when p slightly 
exceeds pd* at a certain time the motion mentioned will emerge 
from the equilibrium well % (PI I according to the definition, 
this will indeed be a DS. 

For p = pa let the domain of possible motions V(p”) (see 
(1.6)) satisfy the condition V(p”)S J (o(p”)), Then there are no DS. We will increase p 
starting from p”. By virtue of Theorem 2.1 the DS becomes possible for the least value of p 
for which the saddle point at %l(o,@)) is incident into the domain V(p) defined by the 
inequality (1.6). There is obviously no DS if o,(p) is the single equilibrium of the system 
(1.11. 

Evaluation of pd* involves integration of the non-stationary system (1.1) for different 
p in a time segment 'undetermined in advance (and possibly even tending to 00 as p-~pd*), which 
produces serious difficulties. Its main disadvantage is the limiting condition 'ol (O)= 0. 

Furthermore,, we introduce the astatic CL p,, of the equilibrium o0 as the least solution 
of the equation 

~(m*(~~)* P,)=~+o, Pa& wc=l%@o) (3.1) 
where o, (p*) is the unstable equilibrium at ~3(~*~*)) such that F(w, (p=),p=) = 0. 

Therefore, for p=p* (and p slightly exceeding j+,) as small as desired, but a directional 
thrust of the geodesic connecting o,with a,,@,,) in a suitable manner ejects the system from 

J (0, W). 
Let us consider the stationary problem 

i' (0, p) = 0 (3.2) 
Letp,denote the upper CL for the buckling of a fundamental family of subcritical 

equilibria o,(p) and p~tie lower CL of the system, i.e., the least load prior to which the 
solution of system (3.2) is unique. We assume that P e IOr PJ, PO = 0, 00 (0) = 0, Pr > 0, 1 (00, 
p.)=O. Then if the inequalities 

z (O",P") < 0, 1 (% Pr) > 0 

are simultaneously satisfied, where CO,, = lim O, (p) as p -+p,,, andot is the solution of system 
(3.2) for p=pz, where o,ge;o,@~), then the value p. satisfies the inequality pl<p~<p~. 

It 1s clear that p. gp, + so that the astatic load yields a lower bound for the dynamic 
load. It can be assumed that from the practical viewpoint it is more informative since it is 
referred to more general initial conditions (only the energetic smallness of the quantity 
q(O) is required in place of the condition o,(O)= 0). Meanwhile, it is considerably easier 
to calculate the quantity pa in many cases since only stationary problems need be considered 
for this according to the theorem. In a number of cases pozpd*. Agreement holds if w. lies 
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on the unstable arm of the saddle 0,. 
We consider the set of values of p: BP = (p: I(y,p)= I(q,,p)), where y is any solution of 

the equation J'(y,p) = 0 corresponding to unstable equilibrium. It is ordinary possible to 
arrange the values of PEB, in the form of a non-decreasing sequence of numbers pi (i = i,..., 
k). A saddle point vi corresponds to each,pi. Evidently paE&, and pl< pa. If the set B, 
consists of one point then pa = PI. If the set BP consists of more than one point, then a 
difficulty arises in isolating those saddle points yi that belong to the boundary of the well 

aJ (~6 (P)). It is hence sufficient to consider only piE [po,pu). Only the solution of the non- 
stationary problem (1.1) yields a guarantee that the saddle point belongs to i+J (0, (~1). 

We will consider the special case when (1.1) describes the vibrations of a mechanical 
system with N degrees of freedom. Then N,=R" is a Euclidean space 0 (8) = (0% (t), 02 (Q, I ., 

mN (t)) 6s RN are coordinates of the system location at the time t. The potential energy I(o,p) 
is a fairly smooth function in a certain domain L= 62 x [pO. pk] and growing in o :VR > 03, there 
is a r>O such that 1(m,p)>~ follows from the condition !jo/>~ for all PE[P~,P~). 

The domain Q is called the configuration space of the system. Its phase space M= OX R" 
is the space of all possible pairs (0, ot) :o~8, o,=RN. Under the assumptions made, the 
Cauchy problem with.initial conditions oI+,, = go, tit Ii=,, = g, for (1.1) when (go, gl) E M has a 
solution (unique because of the smoothness), defined for all t>O. Indeed, because of the 
growth of the function I in o,the a priori estimate of the solution for all t>O follows 
from the energy dissipation Eq.(l.Si. 

The critical points of the functional I, the equilibrium points of the system (1.11, 
satisfy (2.1). For fl= 0 each isolated point of the minimum m is a stable equilibrium of the 
system (the Lagrange'theorem), while for B>O it becomes asympotically stable. The 
definition of a well and the proof of the theorem about the existence of a saddle point on its 
boundary in the case of a finite-dimensional space is contained in /7/. The type of saddle 
point s is governed by the number of inertias of the quadratic form corresponding to the 
Frkhet differential 1 - I$, (S). 

4. Dynamic snap-through of elastic shells. Let D be a simply-connected domain 
in the (s,y) plane, bounded by the sufficiently smooth contour r = l?r U rz;p,x,sO are the 
internal normal, curvature, and arclength of the curve I'. 

Following /lo-12/, we introduce the Hilbert spaces of the functions 
1) the space H = L,(D) with the scalar product 

(u, v)H=i uvdlcdy vu, UE A 

2) the space H, which is the closure of the set of functions infinitely differentiable in 
D and satisfying the boundary conditions 

Wlr=O, m,Ir,=O (4.1) 

[WPP - Yxw,]r.=O, o<v <r/z 

with a finite norm generated by the scalar product 

(Wl, w&-r, = pw1, %)a = 

s {Aw,~Awa--((1 -Y)[Q, w&~&/ 

bwD=ru,, + Wyyr AZ=AA 

[u, Ul=%J-+y + U"U%#--2%&" 

(4.2) 

H,is the energetic space of the bihanuonic operator with boundary conditions (4.1) on r. 
3) in the special case when I'=rr, we denote the space Hr by Hz. 
We consider a shallow elastic shell with middle surface .v, = z&y), (z, y)E D. For simplicity 

we consider the shell edge to coincide with the curve r and to be stressfree. At the time 
t= 0 a load p(z,y,p) which remains constant for all t> 0 is applied instantaneously to the 
shell@ is a load parameter and ~(2, .y,O)= 0). 

The equation for the non-linear vibrations of such a shell can be written in the form 

mhw,, + I’ (w,p) = 0, I'(w) = gradn I(W) (4.3) 

Z(u), p)=+,(w) +&Ia(F)-+MY 

Zi(u)= i {(AzJ)'-(~ -Y~)[u, u]jdrDabr (i= $3 2) 

D = HP/[12 (1 - +)I, v1 = Y, v2 = -v 
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Here w(z,y,t) is the deflection function 

on I?, I is the shell potential energy, F is 
volume of the shell, v is Poisson's ratio, h 

Here F EHa and for a given function w&H, 
the integral identity 

be satisfied 
We will 

to (4.4), we 

that satisfies the boundary conditions (4.1) 
the Airy stress function, m is the mass per unit 
is the shell thickness, and E is Young's modulus. 
is determined uniquely by the requirement that 

l/Eh (F, X&I. = s, ([G 4 - ‘/.a b’s 

for all XIE HZ. 
show that the potential energy I satisfies 
have 

UEhF = F, + F, 

VI, x&s, = s, 12, 4 XI dx dy 

WI} x1 dx dy (4.4) 

the conditions of Sect-l. According 

(4.5) 

(Fa, x~).y, = - -+ 1 [w, w] XI dx dy, VXI E Ha 
D 

Applying (4.5), we deduce from (4.3) /12/ 

l/EhZa (F) = @a* + as* + @I* 

@,a* = l/z II F Ilk, 

(4.6) 

where ai* are homogeneous functionals of order i relative to w. 

Lemma 3.1. /lO-12/*. The functionals 0i* (i = 2, 3, 4) and Aqwd+ are weakly continuous 

in H,. By using the lemma, we obtain that the functional I can be represented in the form of 

a sum of II wIIH,~ and a weakly continuous functional, i.e., in the form of (1.3). It follows 
from (4.3) that Z(W) is a functional that grows in w (coercivity property). We note that 
analogous deductions are obtained from the 1.1. Vorovich results in the case of boundary 
conditions corresponding to fixed clamping of the edge. 

Therefore, for system (4.3) it is possible to apply the investigations of Sect.3, to 
introduce the astatic CL and by using the analysis of the non-linear equilibrium equations, 
to find the lower bound of the critical load for the shell DS. 

For example, we will consider the problem on an axisymmetric DS of a spherical shell, 
clamped freely along the edge and in equilibrium wg= zuI bO) under the effect of a uniformly 
distributed external pressure (~=p@~ (here cl0 = 32 ,&,*hA-Q-4, ~2 = 4 [3(1 - v*)]%&-1, h, is the shell 
rise, h is its thickness, a is the support radius, E is Young's modulus and Y is Poisson's 
ratio). At the time t= 0 the additional pressure ,J= @ -P~)Q~ is applied instantaneously 
to the shell so that for t>O a uniformly distributed pressure ~=pq~ @>p~)is constantly 
applied to the shell. 

In the case of axisymmetric deformation, the shell potential energy is written in 
dimensionless variables in the form 

(4.7) 

The relationship between the dimensionless and dimensional variables is governed by 
formulas (8) in /3/, v='/~. 

To determine the equilibrium astatic CL of IU~ it is necessary to find the value p ~[p~.pJ 
corresponding to points of intersection of the graphs I0 (w*, P) and 10 (~0, P) where w*(z, p) is 
the solution of the stationary problems I~ot(~*,p)= 0. Only those values of p are selected here 
that correspond to unstable equilibria. The graphs mentioned are constructed by the alignment 
method /24, 25/. 

*See also Vorovich, 1.1. Certain Mathematical Problems of Non-linear Shell Theory. Doctoral 
Dissertation. Leningrad State University. Leningrad, 1958. 
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\ 

Fig.2 

Let p. = 0. Then lo, = w*(O) = 0 and Is&,, p,) = 0. To determine the points of the set B,, we 

have the equation &(y, p)= 0, where y is any solution of the equation IO'&, p)= 0 corresponding 
to unstable equilibrium. A graph of Eo= 10~Vo((w*,+p) for A=6 is represented in the right 
upper corner of Fig.2. The astatic CL Pa of the equilibrium mO= W* (0)~ Q is the point of 
intersection of the p axis with the unstable equilibrium branch of the graph of Eo. i.e., 
pa'= 0.190. We note that because of a direct numerical integration of problem (4.3), (4.7) 
using an implicit finite-difference scheme and application of the Budiansky-Roth criterion 
/2, 3/, we obtain Aa= 0.195 for the critical DS value of the equilibrium LV~=O. We here have 
for the initial conditions [lo= w&=0. Analogously, we find pa= 0.190, pay 0.192 for h = 5.5. 

For h= 12 the graph of E ,, is'represented by the solid lines in Fig.2. In this case 
Ad= 0.29. To determine the load Aa of the equilibrium wO=: 0 we examine the set B, introduced 
in Sect.3, which consists of the points p1 = 0.159, Aa = 0.303, ps = 0.427, PI = 0.438,~~ = 0.519, pI = 0.546. 
Furthermore, we have pu= 0.396, and only the points p1 and p 8 belong to the interval [O,p,). The 
pointpn is found on the graph of E@(P) on the unstable branch of solutions having a common 

point pu with the-stable pre-critical equilibrium branch, while the point pI is on the 
unstable branch having the common point pl=O.O39, with the branch ofthestable equilibrium 
family deep in the post-critical stage. We hence conclude that pa== 0.303;~~ is obtained by 
integrating with respect to t between 0 and 750. We note that the values of Aoand the CL Ad 
for spherical and conical shells under the fundamental kinds of boundary conditions and 
different values of A are presented in /15, 16/.* (*See also, Srubshchik, L.S., On the critical 
pressure of dynamic snap-through of elastic spherical and conical shells. Rostov-o&-Don,: 1983. 
Deposited in VINITI 24-03'83; ~0.1506-83; and the correction'to /lS/ printed in the Dokl. Akad. 
Nauk SSSR, Vo1.282, 1?0:2, 264, 1985); 

There results from theorems on the uniqueness of the solution and the discussion in Sect- 
3, that axisymmetric DS is impossible for circular plates and spherical shells with a fairly 
small ratio hdh. 

me solution of the problem of determining the astatic CL taking non-symmetric deformations 
into account for a shallow spherical shell is unknown as yet and will become possible when 
values of the shell potential energy have been evaluated on all the equilibrium paths in the 
interval (~8, puf. 

In conclusion, we note that Friedrichs /26/ introduced the intermediate critical lpad 
pM~@~.pu) to explain the snap-through mechanism of a spherical shell, where the fundamental 
and buckling equilibrium modes have equal potential energies. Values of pM have been evaluated 
in /24/, for instance. The values of py are obviously substantially less than the values of 

PO. 
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